Package: dimensio 0.9.0
dimensio: Multivariate Data Analysis
Simple Principal Components Analysis (PCA) and (Multiple) Correspondence Analysis (CA) based on the Singular Value Decomposition (SVD). This package provides S4 classes and methods to compute, extract, summarize and visualize results of multivariate data analysis. It also includes methods for partial bootstrap validation described in Greenacre (1984, ISBN: 978-0-12-299050-2) and Lebart et al. (2006, ISBN: 978-2-10-049616-7).
Authors:
dimensio_0.9.0.tar.gz
dimensio_0.9.0.zip(r-4.5)dimensio_0.9.0.zip(r-4.4)dimensio_0.9.0.zip(r-4.3)
dimensio_0.9.0.tgz(r-4.4-any)dimensio_0.9.0.tgz(r-4.3-any)
dimensio_0.9.0.tar.gz(r-4.5-noble)dimensio_0.9.0.tar.gz(r-4.4-noble)
dimensio_0.9.0.tgz(r-4.4-emscripten)dimensio_0.9.0.tgz(r-4.3-emscripten)
dimensio.pdf |dimensio.html✨
dimensio/json (API)
NEWS
# Install 'dimensio' in R: |
install.packages('dimensio', repos = c('https://tesselle.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/tesselle/dimensio/issues
data-analysismultivariate-analysis
Last updated 2 months agofrom:2ffdf8d89f (on v0.9.0). Checks:OK: 3 NOTE: 4. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Sep 26 2024 |
R-4.5-win | OK | Sep 26 2024 |
R-4.5-linux | OK | Sep 26 2024 |
R-4.4-win | NOTE | Sep 26 2024 |
R-4.4-mac | NOTE | Sep 26 2024 |
R-4.3-win | NOTE | Sep 26 2024 |
R-4.3-mac | NOTE | Sep 26 2024 |
Exports:augmentbiplotbootstrapburtcacdtcolnamescolorget_contributionsget_coordinatesget_correlationsget_cos2get_dataget_distancesget_eigenvaluesget_inertiaget_replicationsget_variancelabelloadingsmcapalette_color_continuouspalette_color_discretepalette_color_pickerpalette_linepalette_shapepalette_size_rangepcapcoaplotplot_columnsplot_contributionsplot_cos2plot_individualsplot_rowsplot_variablesplot_variancepredictrownamesscreeplotsummarytidyviz_columnsviz_confidenceviz_contributionsviz_cos2viz_hullviz_individualsviz_rowsviz_toleranceviz_variableswrap_confidencewrap_hullwrap_tolerance
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Benthos | benthos |
Biplot | biplot biplot,CA-method biplot,PCA-method |
Partial Bootstrap Analysis | boot bootstrap,CA-method bootstrap,PCA-method |
Burt Table | burt burt,data.frame-method burt-method |
Correspondence Analysis | ca ca,data.frame-method ca,matrix-method ca-method |
Complete Disjunctive Table | cdt cdt,data.frame-method cdt,matrix-method cdt-method |
Colours | colours |
Countries | countries |
Dimnames of an Object | colnames,MultivariateAnalysis-method dim,MultivariateAnalysis-method dimnames dimnames,MultivariateAnalysis-method rownames,MultivariateAnalysis-method |
Get Contributions | get_contributions get_contributions,MultivariateAnalysis-method get_contributions-method get_correlations get_correlations,PCA-method get_correlations-method get_cos2 get_cos2,MultivariateAnalysis-method get_cos2-method |
Get Coordinates | get_coordinates get_coordinates,MultivariateAnalysis-method get_coordinates,PCOA-method get_coordinates-method get_replications get_replications,BootstrapPCA-method get_replications,MultivariateBootstrap-method get_replications-method |
Get Original Data | get_data get_data,MultivariateAnalysis-method get_data-method |
Get Eigenvalues | get_distances get_distances,MultivariateAnalysis-method get_distances-method get_eigenvalues get_eigenvalues,MultivariateAnalysis-method get_eigenvalues,PCOA-method get_eigenvalues-method get_inertia get_inertia,MultivariateAnalysis-method get_inertia-method get_variance get_variance,MultivariateAnalysis-method get_variance-method |
Extract Loadings | loadings loadings,PCA-method |
Multiple Correspondence Analysis | mca mca,data.frame-method mca,matrix-method mca-method |
Principal Components Analysis | pca pca,data.frame-method pca,matrix-method pca-method |
Principal Coordinates Analysis | pcoa pcoa,dist-method pcoa-method |
Plot Coordinates | plot plot,PCOA,missing-method |
Predict New Coordinates | predict predict,CA-method predict,MCA-method predict,PCA-method |
Scree Plot | screeplot screeplot,MultivariateAnalysis-method screeplot,PCOA-method screeplot-method |
Extract Parts of an Object | subset [[,CA,ANY,missing-method [[,PCA,ANY,missing-method |
Object Summaries | summary summary,CA-method summary,PCA-method |
Tidy Coordinates | augment augment,MultivariateAnalysis-method augment-method tidy tidy,MultivariateAnalysis-method tidy-method |
Visualize Contributions and cos2 | viz_contributions viz_contributions,MultivariateAnalysis-method viz_contributions-method viz_cos2 viz_cos2,MultivariateAnalysis-method viz_cos2-method |
Visualize Individuals Factor Map | viz_individuals viz_individuals,PCA-method viz_individuals-method viz_rows viz_rows,BootstrapCA-method viz_rows,MultivariateAnalysis-method viz_rows-method |
Visualize Variables Factor Map | viz_columns viz_columns,MultivariateAnalysis-method viz_columns,MultivariateBootstrap-method viz_columns-method viz_variables viz_variables,BootstrapPCA-method viz_variables,CA-method viz_variables,PCA-method viz_variables-method |
Plot Envelopes | viz_confidence viz_confidence,BootstrapCA-method viz_confidence,MultivariateAnalysis-method viz_confidence-method viz_hull viz_hull,BootstrapCA-method viz_hull,MultivariateAnalysis-method viz_hull-method viz_tolerance viz_tolerance,BootstrapCA-method viz_tolerance,MultivariateAnalysis-method viz_tolerance-method viz_wrap |
Wrap Observations | wrap wrap_confidence wrap_confidence,MultivariateAnalysis-method wrap_confidence-method wrap_hull wrap_hull,MultivariateAnalysis-method wrap_hull-method wrap_tolerance wrap_tolerance,MultivariateAnalysis-method wrap_tolerance-method |